JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

# B.Tech II Year I Semester Examinations, March - 2021 

ELECTRICAL CIRCUIT ANALYSIS
(Electrical and Electronics Engineering)
Time: $\mathbf{3}$ hours
Max. Marks: 75

## Answer any five questions <br> All questions carry equal marks

1.a) Find the Thevenins's equivalent circuit of the circuit shown in figure 1 across the terminals ab . And also find the current through $\mathrm{R}_{\mathrm{L}}=16$ ohm.


Figure: 1
b) Compute the current in 23 ohm resistor using super position theorem for the circuit shown in figure 2.
[8+7]


Figure: 2
2.a) Find the valut of $R_{L}$ so that maximum power is delivered to the load resistance shown in figure 3.


Figure: 3
b) Define duality and explain in detail about the dual networks.
3. Derive an expression for current response of RLC series circuit transient for unit step input.
4.a) For a source free RLC series circuit, the initial voltage across C is 10 V and the initial current through L is zero. If $\mathrm{L}=20 \mathrm{mH}, \mathrm{C}=0.5$ microfarad and $\mathrm{R}=100 \mathrm{ohm}$. Evaluate $\mathrm{i}(\mathrm{t})$.
b) Obtain the current expression in a R L series circuit when it is excited by $v(t)=V m \sin w t$. Also, draw the waveform for power.
[8+7]
5.a) Define RMS value and Average value of an alternating quantity. Determine these values for a half wave rectified sine wave.
b) A three phase delta connected load has $\mathbb{6}_{\boldsymbol{6}}=(100+j 0)$ ohms, $Z_{c c}=(-j 100)$ ohms and $\mathrm{Z}_{\mathrm{ca}}=(\mathrm{j} 70.7)$ ohms is connected to a balanced 3 phase 400 V supply. Determine the line currents $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{\mathrm{c}}$. Assume the phase sequence abc.
6. Explain the following:
a) Dot convention in coupled circuits.
b) Ideal transformer.
c) Complex power in a 1- $\phi$ circuit.
7. A series RLC circuit with $\mathrm{R}=3 \Omega, \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{C}=0.5 \mathrm{~F}$, is excited by a unit step voltage. Obtain the expression for $\mathrm{I}(\mathrm{t})$ using Laplace Transform method. Assume that the circuit is initially relaxed. Sketch the variation of $I(t)$ and state whether the circuit is over damped, or under damped or critically damped.
8.a) Obtain the expression for Y-parameters in terms of transmission parameters.
b) Determine the Hybrid parameters for the Two Port network shown in figure 4


Figure: 4
---00O00---

